
Introduction to the Command-
line
Where the command-line fits in 1

What the command-line is like 2

How we access the command-line 2

There's more than one command-line 3

Which command-line to learn first 3

The command-line is a way of using a
computer by entering textual commands
one after another which cause programs

to run and do useful work.

It dates back to the 1960s and is still widely used today
because it's much, much easier to write and maintain
programs that use text than ones that use graphics.

This handout summarizes the concepts and context
that are most helpful to know as you begin learning to
use the command-line.

Where the command-line fits in
Picking up the command-line requires understanding
it's place in the whole computer system.

Every computer comes with an operating system. The
operating system, or OS, is a complex collection of
cooperating software programs, some of them with
special functions and properties.

The purpose of the OS is to make life easier both on
the user (you) and on software programmers by
simplifying the technical details of the computer's
hardware. For example, when you attach a USB thumb
drive to your computer, the OS automatically takes
care of recognizing and opening it. And when a
program asks for a file from the thumb drive, the OS
takes care of shepherding the data from the thumb

drive, without the program needing any thumb drive-
specific instructions to cope. The OS takes care of
operating the computer hardware, so that you and your
programs can take care of more interesting tasks.

Two OSes dominate the market as far as most people
are concerned: Microsoft Windows and Apple macOS,
although there are other options as well for both
everyday and special-purpose computing.

Most people understand their computer as a system
of three layers, of which the OS is one. The bottom
layer is the computer hardware. On top of this
foundation rests the OS, which must be compatible
with the hardware. Finally, on top of the OS rest the
applications, the programs which people use to get
their work done. Just like the OS needs to be
compatible with the underlying hardware, so the
applications need to be compatible with the OS.

But that isn't the whole truth. A slightly more accurate
picture adds a fourth layer called the environment:

The environment is a software system that provides an
overarching user interface to the computer and the
operating system.

It's so called because it offers the human user an
"environment" inside which they can launch, manage,
switch between, and close applications. The
environment is separate from the OS, but it's

absolutely essential for users because it is the "face" of
the OS, through which users can interact with it.

When you think of Windows or macOS, it's actually
the environment you're thinking of. Both OSes
provide a graphical environment, where applications
are given windows inside which they may draw their
user interfaces.

Besides giving applications their windows, these
graphical environments also provide overarching
features, like the taskbar and start menu in Windows or
the menu bar and dock in macOS.

The point of explaining all this is to make the following
statement:

The command-line is an environment.

Just like the graphical environments of Windows and
macOS provide ways for you to control your computer
and places for applications to create user interfaces, so
does the command-line.

The main difference is that, instead of a graphical
environment, the command-line is a textual
environment.

What the command-line is like
The command-line is
much like an infinite
sheet of paper, on which
you, your operating
system, and your
applications can take
turns writing. This is
because, decades ago,
that's how things
actually worked: a
person would sit at a
keyboard and enter a
command, and the results would be printed on a long
roll of paper.

Of course nowadays we use monitors, which open up
exciting new possibilities like erasing and rewriting
text that has already been written, but many important
programs never do this specifically so that their output
can be printed on paper or saved to a file.

How we access the command-line
We do most of our work in a graphical environment
that we don't want to leave, and so we access the
command-line by running a program called a terminal
emulator.

A terminal is a combination keyboard and printer or
monitor from the days when a building or even a
campus would share a single, mainframe computer.
Terminals in peoples' offices would be connected to
the mainframe by wires running throughout the
building or campus, and had no computational abilities
of their own.

The terminal emulator is a normal graphical program
that pretends to be a terminal, so that the OS can
provide the command-line through the emulator
without caring that it's actually a graphical program.

There's more than one command-line
Windows and macOS both give you only one graphical
environment. It's a major part of their product and their
business model. But there is no technical reason why a
single computer can't have more than one
environment of any kind, so that users can choose what
they like.

Windows and macOS provide default command-lines
and terminal emulators, but it's possible to install more
of both. You may grow to be a power user, and find that
third-party terminal emulators offer you features that
you can't get in your OS's default emulator. You may
also one day decide to try different command-lines for
the same reason.

To prepare you for this likely future there's a handful of
command-lines, or shells, you need to be aware of.

A note on terminology. The term environment
isn't actually used all that often because it's a
pretty abstract concept. In practice most people
talk about the desktop when they mean a graphical
environment and the command-line when they
mean a textual environment, even though
desktops and command-lines are actually only one
kind of graphical and textual environment,
respectively.

For command-lines the figurative term shell is
used much more often. Strictly speaking, it's a
shorter synonym of environment. We could say
that Windows and macOS both offer graphical
shells. But for historical reasons, people actually
use the term shell to refer to a command-line
environment.

Windows comes with two shells and two
corresponding emulators, one called cmd.exe and the
other called PowerShell.exe. If you use Windows you
should focus on learning the newer PowerShell while
being aware that you may find information on the Web
about using cmd as well.

macOS comes with several shells and one emulator.
Unlike on Windows, they don't share a name. The
default shell is called Zsh and the emulator is called
Terminal.app. macOS also includes the bash, ksh, and
tcsh shells, but except for bash you'll very probably
never use them.

There's some extra stuff you should know about the
relationship between the shells and the OSes we've
discussed. While cmd and PowerShell are both
Microsoft products, none of the shells included
with macOS belong to macOS or even Apple.
Zsh, bash, ksh, and tcsh are all independent
projects. They are free and open source software,
and can be used on Windows as well as on macOS.

bash comes preinstalled on macOS and Linux, and can
be installed on Windows. Linux is a family of free and
open source operating systems that you're likely to
come into contact with sooner or later. bash is an older
shell, but also so popular and reliable that it serves as a
de facto common denominator across systems and
organizations.

The last shell you should know about is called fish,
short for Friendly Interactive SHell. fish is a newer shell
with modern features and conveniences that you won't
find in, say, bash. Further, as the name implies, fish
emphasizes user-friendliness, giving it a more
consistent and gentler learning curve. Neither
Windows nor macOS come with it, but it's not difficult
to install. It is this writer's choice, and my
recommendation is somewhat biased by my personal
preferences.

Which command-line to learn first
So which should you learn first? That's difficult to say.
No matter what you choose, you're making some kind
of trade-off. One might be easier to use, but you need
to install it first. Another might be already installed, but
not on every OS you use. And a third, while it is installed
in many places, may be more difficult to learn.

This handout takes the approach of recommending
books instead of shells--one each for Windows and
macOS--on the hope that the quality of your learning
resources is easier to maximize then the optimality of
your choice of first shell. The books cover the
PowerShell and Zsh shells, respectively.

But besides books, YouTube is a first-rate resource for
finding tutorials of widely varying styles (and degrees
of quality). I couldn't find a book that teaches you how
to install bash on Windows 10, but "bash shell windows
tutorial" turned up tons of results.

Windows users should pick up PowerShell for
Beginners by Ian Waters, published by Apress. The
book takes a gradual and methodical approach that
focuses on giving you a strong foundation on which to
later build more practical skills. The book reflects
PowerShell's intended use as a scripting and
automation tool more so than a shell.

Windows users should also know a bit more about
the history of their OS and how their command-line
has been shaped.

Windows started in the mid-80s as a graphical shell
for the MS-DOS operating system. Where
previously Microsoft's command-line had been a
critical part of their most important product,
Windows' success caused the command-line to be
pushed to the background. The big idea was that
everything should be able to be done graphically,
and so the command-line became a legacy tool.

PowerShell, which is Microsoft's newer command-
line, is not neglected like the old one. But this is
because Microsoft has a particular use case in mind:
that PowerShell is a tool for scripting and
automation--for making it easy and quick to write
tailored programs that perform custom tasks useful
for a variety of business and other purposes. Not as
a way of using your computer.

This is in stark contrast to shells for macOS and
Linux, which do still care about being a human user
interface. So when you learn PowerShell, you are
going to learn how to use a command-line, but the
focus will be on writing scripts. You'll learn

transferable knowledge, but when you come to pick
up bash on Linux or Zsh on macOS--or if you install
one of those on Windows--be ready to encounter a
very different style of doing things.

macOS users should pick up Tweak Your Mac
Terminal by Daniel Platt, published by Apress. The
book takes a practical approach that focuses on giving
you skills and knowledge that can be composed as
needed into more complex solutions. The book reflects
Zsh's strengths in interactive use, rather than
automation.

